Biodegradable materials in the construction industry
[edit] Introduction
A material that is biodegradable is one that can be broken down by living organisms, such as bacteria and fungi, without leaving any contaminating substances behind. A natural decay process, biodegradability results in compaction and liquefaction of materials. The nutrients released are eventually recycled into the environment by natural processes. Typical examples of biodegradable materials include leaves, food and sewage. Increasingly, biodegradable packaging materials are also available.
One side effect of this process can be the release into the atmosphere of the gas methane, which as a greenhouse gas can trap 100 times more heat than CO2.
[edit] Construction
The essence of biodegradability is not that these products break down – many other non-biodegradable products can also share this characteristic – but that the breakdown occurs without releasing toxins into the environment. This is of great significance to the demolition of buildings, which typically comprise a mix of potentially toxic materials.
The traditional building site or demolition site, is likely to produce an abundance of waste materials that are non-biodegradable and will end up in landfill (even if they are first reused or recycled). This includes most industrial materials such as plastics, glass and heavy metals, the disposal of which presents long-term problems for society. A study by Cardiff University found that 70–105 million tonnes of waste is created in the UK from demolishing buildings every year; only 20% of that is biodegradable.
Recent years have seen an increase in the availability of biodegradable materials and packaging, which may eventually help avoid accumulating mountains of potentially polluting waste.
Materials which are biodegradable include:
- Biodegradable paint – made from a mix of milk protein, lime and mineral pigments.
- Bamboo – used increasingly in recent years in loadbearing structures. It has also tested favourably as a replacement for reinforcing steel in concrete.
- Cork – a traditional material but is now seeing increased usage thanks to its aesthetics, fire resistance, acoustic insulation and the fact that it is extremely waterproof. It can be used internally and externally.
- Desert sand – contrary to common belief, normal sand of the type used in building is not in abundant supply and suffers heavy demand globally. Hitherto, desert sand has not been an option due to its fine, smooth grains which do not readily bind together. But it has been incorporated in a composite material called Finite developed at Imperial College, London. Claimed to be as strong as both concrete and ‘traditional housing bricks’, it is easy to reuse and biodegradable, has half the carbon footprint of concrete and can also be remoulded for multiple lifecycle uses.
- Hempcrete – a hemp-based bio-composite material that also combines lime, sand or pozzolans, it can be sprayed or formed into lightweight blocks that combine insulation and thermal mass. It does not have the strength of concrete but can be used as an infill to a structural frame. It has a claimed one-hour fire resistance.
- Linoleum (lino) – now coming back into fashion partly due to its eco-friendly attributes, linoleum’s constituent, natural materials of linseed oil, natural resin, ground cork dust, wood flour and powdered limestone result in a biodegradable floor covering that can be supplied in a variety of colours and textures.
- Soybean plastics – created from organic sources, however not all are biodegradable due to the addition of non-biodegradable polymers. However, some soybean plastics can be made to biodegrade. Their use at present is limited mostly to biodegradable packaging for consumer products but this is likely to increase as research intensifies.
[edit] Related articles on Designing Buildings Wiki
- BREEAM Recycled aggregates.
- Circular economy.
- Composting.
- Construction waste.
- Disposal.
- End of life potential.
- Environmental impact assessment EIA.
- Environmental plan for building design and construction.
- Managing packaging waste streams.
- Mean lean green.
- Pre-demolition audit.
- Recyclable construction materials.
- Reduce, reuse, recycle.
- Reused construction products.
- Site waste management plan.
- Site Waste Management Plans – A Necessary Burden.
- Sustainable materials.
- Waste and Resources Action Programme WRAP.
- Waste hierarchy.
- Waste management plan for England.
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.